
Vol. 22 (NE-1), ENC Marzo 2012 69

U n i v e r s i d a d d e G u a n a j u a t o

The problem of propositional satis f iability (S AT) is a classic NP-complete problem, but there is a wide range of
research on how to identify limited instances for which the S AT problem can be solved efficiently.

The problem of counting models of a boolean formula, problem denoted as (#S AT), has been relevant in the
Artificial Intelligence area (AI). For example, it has been known that #SAT has been used for modeling problems
as: for estimating the degree of reliability in a communication network, for computing the degree of belief in
propositional theories, for the generation of explanations to propositional queries, in Bayesian inference, in a
truth maintenance systems and for repairing inconsistent databases [3, 4, 5, 9, 10]. Those previous problems
come from several AI applications such as planning, expert systems, reasoning, etc.

#S AT is as difficult as the SAT problem, but even when SAT can be solved in
polynomial time, is not known an efficient computational method for #S AT . For
example, the 2-SAT problem (SAT limited to consider two conjunctive forms)
can be solved in linear time. However, the corresponding counting problem #2-
SAT is a #P-complete problem. The maximum polynomial class recognized for
#2SAT is the class (≤ 2, 2µ)-CF (conjunction of binary or unary clauses where
each variable appears twice at most) [5, 9].

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 70

Here, we extend such class for considering the
topological structure of the undirected graph induced
by the restrictions (clauses) of the formula.

We start considering signed graphs (graphs whose
edges are designated positive or negative). That class
of graphs have been very useful for modeling different
type of problems in the social sciences area [6, 7, 8].
For example, the signed graphs has been used for
modeling the interaction among a group of persons
and the type of relationship between certain pair of
individuals of the group. Special focus has been given
on social inequalities, for example, what is it about
such characteristics as sex, race, occupation, edu-
cation, and so on that leads to inequalities in social
interaction? [8].

We consider here an extension of the signed graphs
where all edge in the graph has associated a pair of
signs. In this way, any binary clause can be rep-
resented by such signed edges. And we model an
electric network by those extended signed graphs.

We are interested in computing the different as-
signments (charges) associated to the variables (nodes)
in the network which allow that all edge in the network
keep a charge transmitted by at least one of its two
endpoints (nodes).

The aim is to develop a method to count the dif-
ferent signed paths in which an electric network held
energy on each of its electric lines, by counting the
number of satisfy assignments (models) of the Boolean
formula associated to the electrical network.

Below we summarize a basic set of concepts through
which we try to improve a more complete understand-
ing of terms that will be used in this work.

Topology: Systematic study of the components of
an electrical network and its reciprocal links [2].

Element: Individual constituent of a network with
two or more terminals or bounds that are used for
interconnection with other elements [2].

Nodes and branches: The junction points of the
elements in a network are called nodes. Several el-
ements can join together and to be considered as a
single unit or a whole. When several elements are
joined together so that the flow is the same in all of
them, we say that the alements are connected in se-
rie. The junctions between two components are called

internal nodes. The set of elements in series between
the nodes themselves are called branches [2].

Graph: It is the geometric, topological, representa-
tion of a network, forming a backbone of the physical
layout of the network [2]. A graph G is represented by
a pair (V, E) where V is the set of nodes and E the set
of edges.

A signed graph Γ (also called sigraph) is an ordered
pair Γ = (G, σ) where G = (V, E) is a graph called the
underlying graph of Γ and σ : E → {+,−} is a function
called a signature or signing. E+(Γ) denotes the set of
edges from E that are mapped by σ to ‘+’, and E−(Γ)
denotes the set of edges from E that are mapped by σ
to ‘-’.

The elements of E+(Γ) are called positive edges and
those of E−(Γ) are called negative edges of Γ. A signed
graph is all-positive (respectively, all-negative) if all
of its edges are positive (negative); further, it is said
that Γ is homogeneous if Γ is either all-positive or all-
negative, otherwise Γ is heterogeneous .

Signed graphs have been very useful for modeling
interactions among a group of persons and for repre-
senting the type of relationship between certain pair
of individuals of the group. Special focus is on the
social inequalities [8].

Given a set of de n Boolean variables, X =

{x1, x2, ..., xn}. It is called a literal to any variable x or
the negation x of it. We use v(l) to indicate the variable
involved by the literal l.

The disjunction of different literals is called a clause.
For k ∈ N, a k − clause is a clause consisting of exactly
k literals. A variable x ∈ X appears in a clause c if x or
x is an element of c. Let v(c) = {x ∈ X : x appears in c}.
A conjunctive form (CF) is a conjunction of clauses. A
k−CF is a CF containing only k− clauses and, (≤ k)−CF
denotes a CF containing clauses with at most k literals.

Let Σ be a 2-CF, an assignment s for Σ is a function
s : v(Σ) → {0, 1}. An assignment can also be considered
as a set of non-complementary pairs of literals. If l ∈ s,
being s an assignment, then s makes l true and makes
l f alse. A clause c is satis f ied if and only if c ∩ s ∅, and
if for all l ∈ c, l ∈ s then s falsifies c.

A CF Σ is satisfied by an assignment s if each clause
in Σ is satisfied by s and Σ is contradicted if it is not
satisfied. s is a model of Σ if s is a satisfied assignment
of Σ.

Vol. 22 (NE-1), ENC Marzo 2012 71

U n i v e r s i d a d d e G u a n a j u a t o

Let S AT (Σ) be the set of models that Σ has over its
variables: v(Σ). Σ is a contradiction or unsatisfiable
if S AT (Σ) = ∅. Let µv(Σ)(Σ) = |S AT (Σ)|, be the cardinality
of S AT (Σ). Given Σ a CF, the S AT problem consists in
determining if Σ has a model. The #S AT consists of
counting the number of models of F defined over v(Σ).
We will also denote µv(Σ)(Σ) by #S AT (Σ) [1].

Given a signed graph GΣ, we obtain the associ-
ated Boolean formula Σ. Σ can be expressed as a
two Conjunctive Form (2-CF) in the following way. Let
GΣ = ((V, E), σ) be the signed graph, then v(Σ) = V and
for all positive edge x + y in GΣ the clause (x, y) is part
of Σ, while for a negative edge x − y in GΣ the clause
(v(x), v(y)) is part of Σ. This means that the vertices of
GΣ are the variables of Σ, and each signed edge in E
represents a clause in Σ.

The signed graphs are very useful to represent some
kind of relationships among individuals. In this case,
each person is a node of the graph and there is an
edge between {x, y} if x is in some relation to y. Many
of the relationships of interest have natural opposites,
for example: likes/dislikes, associates with/avoids,
and so on [8]. For this, one of the signs: {+,−} is used
as label of each edge of the graph.

For example, if we consider that x likes y, then a
positive edge is denoted between x and y. But this rep-
resentation does not show what happens about the
relation from y to x. y might dislike x or maybe like
him. In order to be more precise in the kind of rela-
tionships between two individuals is better to consider
two signs in each edge, one sign associated with each
end-point of the edge.

Furthermore, in order to consider general Boolean
formulas in 2-CF, we extend the concept of signed
graphs. Instead to consider just one sign as la-
bel of an edge of the graph G = ((V, E), σ), we con-
sider here that all edge in E has associated a pair
of signs. Then the signed function σ is of type
σ : E → {(+,+), (+,−), (−,+), (−,−)} which gives a pair
of signs to each edge of G.

In this way, all binary clause {x, y} can be repre-
sented by a signed edge in the graph in a natural
way without importance of the signs associated to the
variables in the clause. For example the clause {x, y}
will be represented as the signed edge: x − + y which is
equivalent to y + − x, and in this case, ‘-’ is called the

adjacent sign of x and ‘+’ will be the adjacent sign of y.

Moreover, we can consider those extended signed
graphs as an electric network. Σ = (G, σ) where
G = (V, E) is the underlying graph of Σ and σ :
E → {(+,+), (+,−), (−,+), (−,−)} is the signature function.
That means that all edge in the network is energized
in its both end-points.

Here, we are interested in count the different as-
signments associated to the nodes of the network in
such a way that all edge in the network will be satis-
fied by at least one of its two end-points. That means,
that we want that all line in the network keep the
charge from at least one of the two possible sources
(its end-points). For this, we start analyzing the way to
build satisfied assignment in the network considering
first, the most simple topologies associated with the
underlying graph of the electrical network.

Let us consider that the electrical network: GΣ = (V, E)
is a linear path. Let us write down its associated
formula Σ, without a loss of generality (ordering the
clauses and its literals, if it were necessary), as:
Σ = {c1, ..., cm} =

{x11 , xδ1

2 }, {x
2
2 , xδ2

3 }, . . . , {x
m
m , xδm

m+1}

, where

|υ(ci) ∩ υ(ci+1)| = 1, i ∈ [[m − 1]], and δi, i ∈ {0, 1}, i = 1, ...,m.

In order to compute the number of signed paths in
such electrical network, we start with a pair of values
(αi, βi) associated with each node i of the network. We
call the charge of the node i to the pair (αi, βi). The
value (αi) indicates the number of times that node i
takes the positive value and (βi) indicate the number
of times that node i takes the negative value into the
set of satisfied assigments of Σ.

Let fi be a family of clauses of Σ built as follows:
f0 = ∅, fi = {c j} j≤i, i ∈ [[m]]. Note that fi ⊂ fi+1, i ∈ [[m − 1]].
Let S AT (fi) = {s : s satis f ies fi}, Ai = {s ∈ S AT (fi) : xi ∈ s},
Bi = {s ∈ S AT (fi) : xi ∈ s}. Let αi = |Ai|; βi = |Bi| and
µi = |S AT (fi)| = αi + βi. From the total number of models
in µi, i ∈ [[m]], there are αi of which xi takes the logical
value ’true’ and βi models where xi takes the logical
value ’false’.

For example, c1 = (x11 , xδ1
2), f1 = {c1}, and (α1, β1) =

(1, 1) since x1 can take one logical value ’true’ and
one logical value ’false’ and with whichever of those
values satisfies the subformula f0 while S AT (f1) =
{x11 xδ1

2 , x1−1
1 xδ1

2 , x11 x1−δ1
2 }, and then (α2, β2) = (2, 1) if δ1 were

1 or rather (α2, β2) = (1, 2) if δ1 were 0.

In general, we can compute the values for (αi, βi)

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 72

associated to each node xi, i = 2, ..,m, according to the
signs (i, δi) of the literals in the clause ci, by the next
recurrence equation:

(αi, βi) =

(βi−1 ,αi−1 + βi−1) i f (i, δi) = (−,−)
(αi−1 + βi−1,βi−1) i f (i, δi) = (−,+)
(αi−1 ,αi−1 + βi−1) i f (i, δi) = (+,−)
(αi−1 + βi−1,αi−1) i f (i, δi) = (+,+)

(1)

In these recurrences, (i, δi) represent the signs
associated with the literals of the clause ci. We
denote with → the application of one of the
four rules of the recurrence (1). Thus, the ex-
pression (2, 3) → (5, 2) denotes the application
of one of the rules (in this case, the rule 4),
over the pair (αi−1, βi−1) = (2, 3) in order to obtain
(αi, βi) = (αi−1 + βi−1, αi−1) = (5, 3).

These recurrence equations allow to carry the
count of the different ways to keep all line of the
electrical network with charge. In fact, the sum
αm + βm obtained in the last node of the network,
indicates the total number of models that the
Boolean formula associated with the network has.
The value αm + βm also represents the number of
different ways to keep charge on all electric line
in the electrical network.

We give the following examples for illustrating
how the recurrence is applied for specific cases,
although equation (1) considers all the possible
combinations of signs on the edges.

Example 1 Let Σ = {(x1, x2), (x2, x3), (x3, x4), (x4,
x5)} be a 2-CF which conforms a linear path, the
series (αi, βi), i ∈ [[5]], is computed as: (α1, β1) =
(1, 1) → (α2, β2) = (2, 1) since (1, δ1) = (1, 1), and the
rule 4 has to be applied. In general, applying the
corresponding rule of the recurrence (1) according
to the signs expressed by (i, δi), i = 1, ..., 5, we have
(2, 1) → (α3, β3) = (2, 3) → (α4, β4) = (5, 3) → (α5, β5) =
(8, 5), and then, #S AT (Σ) = µ(Σ) = µ5 = α5 + β5 =

8 + 5 = 13 models.

 x2x1 x3 x4 x5

a)

b)

+ + + + ++- -

(1,1) (2,3) (2,1) (5,3) (8,5) =13 models

 x2x1 x3 x4 x5

+ + - + +-- +

(1,1) (1,3) (2,1) (4,1) (5,1) =6 models

 .

Example 2 Let Σ = {(x1, x2), (x2, x3), (x3, x4), (x4, x5)}
be a path, the series (αi, βi), i ∈ [[5]], is computed
according to the signs of each clause, as it is illus-
trated in figure (1a). A similar path with 5 nodes
but with different signs in the edges is shown in
figure (1b).

If Σ is a path, we apply (1) in order to compute
µ(Σ). The procedure has a linear time complexity
over the number of variables of Σ, since (1) is
applied on each node while we are traversing by
the path, from the initial node x1 to the final node
xn.

Given a constrained graph GΣ of a 2 − CFΣ, if
we apply a depth-first search on GΣ and none
backedges are found, then GΣ is a tree and we
can consider any node of GΣ as the root node of
the tree.

The charge of the nodes (αi, βi) for i = 1, ...n,
are calculated while the nodes are visited in a
post-order traversal. The first pair of values (αi, βi)
for each terminal node in the network (tree leaves)
is initialized with the value (1, 1). So, traversing
by the tree in post-order; we start by the most left
child-node first, followed by the right child-node,
and so on, until visit all child-node and after, we
visit the father node.

Vol. 22 (NE-1), ENC Marzo 2012 73

U n i v e r s i d a d d e G u a n a j u a t o

At each visit of a child node i − 1 to a father
node i, the new values (αi, βi) associated with the
father node are computed in the following way.

Algorithm Count_Models (AΣ)

Input: AΣ the tree defined by the electrical
network GΣ

Output: The number of signed paths in the
electrical network, where a signed path means
that all line in the network keep one of the charge
of its two end-points.

Procedure: Traversing AΣ in post-order, and
when a node v ∈ AΣ is left (all of its edges have
been processed) assign:

1. (αv, βv) = (1, 1), If v is a leaf node in AΣ

2. If v is a father node with a list of child nodes
associated, i.e., u1, u1, ...uk, are the child nodes
of v, then the charge of the father-node (αv, βv)
is computed in the following way. As we have
already visited all the child nodes of v, then each
pair (αu j , βu j) j = 1, ..., k has been determined. Then,
(αvi , βvi) is obtained by apply the recurrences in
(1) over (αi−1, βi−1) = (αu j , βu j). This step is iterated
until computes all the values (αv j , βv j), j = 1, . . . , k.
And finally, let αv =

k
j=1 αv j y βv =

k
j=1 βv j

3. If v is the root node of AΣ then returns(αv+βv)

This procedure returns the number of signed
paths for an electrical network in time O(n + m)
which is the necessary time for traversing GΣ in
post-order.

Example 3 Let Σ = {(x1, x2), (x2, x3), (x5, x3), (x3,
x4), (x8, x7), (x9, x7), (x10, x7), (x6, x7), (x11, x12), (x13,
x12), (x12, x6), (x6, x4)} be a 2 − CF obtained from a
connectivity graph of an electrical network. The
tree generated by the formula as well as the num-
ber of signed paths in each level of the tree is
shown in figure 2. The procedure Count_Models re-
turns for αx1 = 168, and for βx1 = 84. Thus, the total
number of signed paths is #SAT(Σ) = 168+84 = 252.

+

+

+

+

+

+
+

+

+

+
+

+

+

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,2)

(2,1)

(1,2)

(1,1)

(4,2)

(2,1)

(168,84)

(1,2)

(2,1)

(2,1)

(2,4)

(2,2)

(6,2)

(24,4)

(24,28)

(2,3)

(4,3)
(7,3)

-
-

-

-

--

-

-

-
-

-

13

11

10

9

8

1

12

7

5

2

6

3

4

 .
The order of processing for the nodes of the

tree in figure 2, is: 1−2, 8−7, 9−7, 10−7, 11−12, 13−
12, 2−3, 5−3, 7−6, 12−6, 3−4, 6−4. Notice that there
are as equal number of application of recurrence
(1) as edges in the tree. And the step 2 in the
procedure Count_Models is applied as much as the
number of internal nodes are in the tree. That is,
because the traverse of a tree in post-order is in
O(n + m), where m is the number of edges and n
the number of nodes in the tree.

We present an extension of the signed graphs
which are relevant for modeling new class of
problems. For example, we model problems as-
sociated to electrical networks using the new
extended signed graphs.

We show that the problem of counting the
number of models of a Boolean formula can be
applied to count the number of signed paths
in an electrical network. We have designed an
exact algorithm which in linear time computes
#2SAT for formulas where its constrained graph
is acyclic.

We have presented different topologies: paths
and trees which represent the backbone of an
electrical network and where to compute the num-
ber of energized paths of the network is done for

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 74

computing the value #2SAT of the formula asso-
ciated with that graph.

